Noncollapsing in mean-convex mean curvature flow

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-collapsing in Mean-convex Mean Curvature Flow

We provide a direct proof of a non-collapsing estimate for compact hypersurfaces with positive mean curvature moving under the mean curvature flow: Precisely, if every point on the initial hypersurface admits an interior sphere with radius inversely proportional to the mean curvature at that point, then this remains true for all positive times in the interval of existence. We follow [4] in defi...

متن کامل

Singularity Structure in Mean Curvature Flow of Mean Convex Sets

In this note we announce results on the mean curvature flow of mean convex sets in 3-dimensions. Loosely speaking, our results justify the naive picture of mean curvature flow where the only singularities are neck pinches, and components which collapse to asymptotically round spheres. In this note we announce results on the mean curvature flow of mean convex sets; all the statements below have ...

متن کامل

Mean Curvature Blowup in Mean Curvature Flow

In this note we establish that finite-time singularities of the mean curvature flow of compact Riemannian submanifolds M t →֒ (N, h) are characterised by the blow up of the mean curvature.

متن کامل

Crystalline mean curvature flow of convex sets

We prove a local existence and uniqueness result of crystalline mean curvature flow starting from a compact convex admissible set in R . This theorem can handle the facet breaking/bending phenomena, and can be generalized to any anisotropic mean curvature flow. The method provides also a generalized geometric evolution starting from any compact convex set, existing up to the extinction time, sa...

متن کامل

Mean Curvature Flow with Convex Gauss Image

We study the mean curvature flow of complete space-like submanifolds in pseudo-Euclidean space with bounded Gauss image, as well as that of complete submanifolds in Euclidean space with convex Gauss image. By using the confinable property of the Gauss image under the mean curvature flow we prove the long time existence results in both cases. We also study the asymptotic behavior of these soluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometry & Topology

سال: 2012

ISSN: 1364-0380,1465-3060

DOI: 10.2140/gt.2012.16.1413